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RADIATIVE INTERACTIONS IN LAMINAR DUCT FLOWS

< -~

P. A. TRIVEDI* and S. N. Tiwant
Department of Mechanical Engineering and Mechanics
Old Dominion University, Norfolk, VA 23529-0247

ABSTRACT

Analyses and numerical procedures are presented for infrared
radiative energy transfer in gases when other modes of energy
transfer occur simultaneously. Two types of geometries are
considered, a Parallel Plate Duct and a Circular Duct.  Fully
developed laminar incompressible flows of absorbing-emitting
species in black surfaced ducts are considered under the
conditions of uniform wall heat flux. The participating species
considered are OH, CO, CO,, and H;0. Nongray as well as gray

formulations are developed for both geometries. Appropriate
limiting solutions of the governing equations are obtained and
conduction-radiation interaction parameters are evaluated. Tien
and Lowder's wide band model correlation has been used in
nongray formulation. Numerical procedures are presented to
solve the integro-differential equations for both geometries. The
range of physical variables considered are Temperature 300 K-
2000 K, Pressure 0.1 atm- 100.0 atm, and Spacing between
Plates/Radius of the Tube 0.1 cm- 100 cm. An extensive
parametric study based on nongray formulation is presented.
Results obtained for different flow conditions indicate that the
radiative interactions can be quite significant in fully developed

incompressible flows.

*Graduate Research Assistant, ICAM Fellow
tEminent Professor, ICAM Director
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Chapter 1
INTRODUCTION

There is renewed interest in investigating various aspects of radiative energy transfer
in participating mediums. Radiative interactions become important in many engineering
problems involving high temperature gases. Recent interest lies in the areas of design
of high pressure combustion chambers and high enthalpy nozzles, entry and reentry

phenomena, hypersonic propulsion, and defence oriented research.

Basic formulations on radiative energy transfer in participating mediums are available
in standard references [1-8]. The review articles presented in [9-24] are useful in
understanding the radiative properties of participating species and the nature of nongray
radiation. The validity of radiative transfer analyses depends upon the accuracy with
which absorption-emission and scattering characteristics of molecular species are modeled

and these are reviewed in [12,13].

For gray participating mediums between parallel plates and in a cylinder, the exact
formulations are available in the literature for different physical conditions. Ussikin and
sparrow [25] studied thermal radiation between parallel plates separated by an absorbing-
emitting, nonisothermal gray gas. Sparrow, Ussikin, and Hubbard [26] investigated
radiative transfer in a nonisothermal gray spherical medium. Viskanta [27] studied
the interaction of conduction, laminar convection, and radiation in a plane layer of a
radiating fluid. Cess and Tiwari [28] investigated heat transfer to laminar flow of an
absorbing-emitting gas between parallel plates. Tiwari [29] studied radiative interaction
in transient energy transfer in gaseous systems. Tiwari and Singh [30] extended Tiwari’s

work [29] for fully developed laminar flows. The studies presented in [27-29] have



2

reviewed other available literature on gray as well as nongray radiative transfer between
planar geometries.

Einstein [31] considered radiant energy transfer in an absorbing-emitting gray gas
flowing within a black walled cylindrical pipe. Nichols [32] studied the influence of
the absorption of radiation on the temperature profile and heat transfer to an absorbing
medium flowing turbulently in an annulus. deSoto and Edwards [33] predicted the
radiative interchange between a black tube and a nonisothermal nongray gas within the
tube. deSoto [34] investigated the coupling of radiation with convection and conduction
in a nonisothermal nongray gas flowing in the entrance region of a black walled tube.
Pearce and Emery [35] treated the thermal entry region for laminar flow of a gray gas or a
gas with gray bands. Kesten [36] presented the equation for the spectral radiant heat flux
distribution in an absorbing-emitting gas contained in a long cylinder. Landram, Greif,
and Habib [37] studied heat transfer in turbulent pipe flows with optically thin radiation.
Habib and Greif [38] investigated nongray radiative transport in a cylindrical medium.
Tiwari and Cess [39] studied heat transfer to laminar flow of nongray gases through a
circular tube. Wassel and Edwards [40] investigated molecular gas band radiation in
cylinders for the axial band absorptance, mean beam length, absorptivity and emissivity

for a nongray gas.

As mentioned earlier, in case of combustion chambers and industrial furnaces, heat
transfer takes place by simultaneous convection and radiation. Also, in some postulated
nuclear reactor loss-of-coolant accident scenarios, it is important to predict heat transfer
from heated walls to flowing water vapor, which is capable of absorbing and emitting
thermal radiation. The main emphasis of this study is to present basic formulations and
solution procedure, to calculate the radiative interaction in an absorbing-emitting medium
in a laminar flow through parallel plates and a circular duct while other modes of heat
transfer occur simultaneously. To accomplish this it is essential to review different band

absorption models available in the literature and incorporate the most suitable model
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in the governing equations. For certain applications, it is desirable to provide limiting
forms of the basic governing equations and, if possible, obtain closed form solutions.
These solutions are very useful in estimating the extent of radiative interaction for a
given physical problem.

A review of different absorption models is presented in Chap. 2. The general problem
of radiative interaction is formulated for flow between black parallel plates in Chap. 3 for
both gray and nongray mediums. A similar formulation is presented for the flow through
a black circular duct in Chap. 4. The numerical procedure for both cases is presented
in Chap. 5. Typical results for both geometries are presented and discussed in Chap. 6.

Finally, the results and conclusions reached from this study are summarized in Chap. 7.



Chapter 2
BAND ABSORPTION AND CORRELATIONS

The study of radiative transmission in nonhomogeneous gaseous systems requires a
detailed knowledge of the absorption, emission, and scattering characteristics of the spe-
cific species under investigation. In absorbing and emitting mediums, an accurate model
for the spectral absorption coefficient is of vital importance in the correct formulation of
the radiative flux equations. A systematic representation of the absorption by a gas, in
the infrared part of spectrum, requires the identification of the major infrared bands and
the evaluation of the line parameters (line intensity, line half-width, and spacing between
the lines) of these bands. The line parameters depend upon the temperature, pressure
and concentration of the absorbing molecules and, in general, these quantities vary con-
tinuously along a nonhomogeneous path in the medium. In recent years, considerable
efforts have been expended in obtaining the line parameters and absorption coefficients
of important atomic and molecular species.

For an accurate evaluation of the transmittance (or absorptance) of a molecular band,
a convenient line model is used to represent the variation of the spectral absorption
coefficient. The line models usually employed are Lorentz, Doppler, and Voight line
profiles. A complete formulation (and comparison) of the transmittance and absorption
by these line i)roﬁles is given in [9-13]. In a particular band consisting of many lines,
the absorption coefficient varies very rapidly with frequency. Thus, it becomes very
difficult and time-consuming task to evaluate the total band absorption over the actual
band contour by employing an appropriate line profile model. Consequently, several
approximate band models (narrow as well as wide) have been proposed which represent

absorption from an actual band with reasonable accuracy [6-13] and [14-24]. Several
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continuous correlations for the total band absorption are available in literature [9-13] and
[19-23]. These have been employed in many nongray radiative transfer analyses with
varying degree of success [9-13] and [14-23]. A brief discussion is presented here on
the total band absorption, band models, and band absorptance correlations.

The absorption within a narrow spectral interval of a vibration rotation band can quite
accurately be represented by the so-called “narrow band models.” For a homogeneous
path, the total absorptance of a narrow band is given by

Ay = / (1 —exp(—koX)]dw 2.1

Aw
where k., is the volumetric absorption coefficient, w is the wave number, and X = py

is the pressure path length. The limits of integration in Eq.(2.1.1) are over the narrow
band pass considered. The total band absorption of the so-called “wide band models”

is given by

A= / [1 —exp(—kuX)]d(w — wo) (2.2)

-0

where the limits of integration are over the entire band pass and w, is the wave number at
the center of the wide band. In actual radiative transfer analyses, the quantity of frequent
interest is the derivative of Egs.(2.1.1) and (2.1.2).

Four commonly used narrow band models are Elsasser, Statistical, Random Elsasser,
and Quasi-Random. The application of a model to a particular case depends upon the
nature of absorbing-emitting molecule. Complete discussions on narrow band models,
and expressions for transmittance and integrated absorptance are available in the literature
[9-13] and [14-16]. Detailed discussions on the wide band models are given in [9-13]
and [17-23]. The relations for total absorptance of a wide band are obtained from
the absorptance formulations of narrow band models by employing the relations for the

variation of line intensity as [9—13] and [20-23]

S; S bo |w = wol
i R =22 2.
F - (&)={-=5



6
where §; is the intensity of the jth spectral line, d is the line spacing, S is the integrated
intensity of a wide band, A, is the band width parameter, and b, = 2 for a symmetrical
band and b, = 1 for bands with upper and lower wave number heads at w,. The total

absorptance of an exponential wide band, in turn, may be expressed by

Awp =28 -2 [ Aveslde-w) o

wide band

where u = % is the nondimensional path length, § = 2—’:} is the line structure param-
eter, L is the Lorentz line half-width, and Ay (u,3) represents the mean absorptance
of a narrow band.

By employing the Elsasser narrow band absorptance relation and Eq.(2.1.3) the

expression for the exponential wide band absorptance is obtained as [12]

A(w,B) = v+ G) j (nd + E; ()] d @.5)
0

where § = YT 5 = 05772156 is the Euler’s constant, and E;(y) is the
exponential integral of the first order. Analytic solution of Eq.(2.1.5) can be obtained

in a series form as [12,13]

- = A"SUM (mn)
Awf) = Z—n(B+l)"n!(n—1)! 26

n=1

where

g’ 2m (m!)?
1
A=— h =
utanh g, B cosh 7
2 2B

C= 2.7

(1+coshB) ~ (B+1)
The series in Eq.(2.1.6) converges rapidly. When the weak line approximation for the

Elsasser model is valid (i.e. 3 is large), then Eq.(2.1.5) reduces to

A(w)=v+1In(u) + E) (u) 2.8
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In the linear limit, Eqs.(2.1.5) and (2.1.6) reduce to A = u, and in the logarithmic limit
they reduce to A = v + In(u). It can be shown that Eq.(2.1.5) reduces to the correct
limiting form in square-root limit. Results of Eqs.(2.1.5) and (2.1.6) are found to be
identical for all pressures and pathlengths. For p > 1 atm., results of Eqs.(2.1.5)-(2.1.7)
are in good agreement for all pathlengths.

By employing the uniform statistical, general statistical, and random Elsasser narrow
band models absorptance relations and Eq.(2.1.3), three additional expressions for the
exponential wide band absorptance were obtained in [12,13]. The absorptance results of
the four wide band models are discussed in detail in [13]. The expression obtained by
employing the uniform statistical model also reduces to the relation given by Eq.(2.1.7)
for large 3.

Several continuous correlations for the total absorptance of a wide band, which are
valid over different values of path length and line structure parameter, are available in
literature. These are discussed, in detail, in [9-13] and [20-23] and are presented here in
the sequence that they became available in the literature. Most of these correlations are
developed to satisfy at least some of the limiting conditions (nonoverlapping line, linear,
weak line, and strong line approximations and square-root, large pressure, and large path
length limits) for the total band absorptance [10-13]. Some of the correlations even have
experimental justification [9-18].

The first correlation for the exponential wide band absorptance (a three piece cor-
relation) was proposed by Edwards et al. [17,18]. The first continuous correlation was

proposed by Tien and Lowder [9], and this is of the form

(u+2)

CERIO =2

A(u,f) =1In |uf (1)

where

(TR

f(t) =294[1 —exp(—2.60t)] , t =
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This correlation does not reduce to the correct limiting form in the square-root limit
[10,13], and its use should be made for # = 0.1. Another continuous correlation was
proposed by Goody and Belton [22], and in terms of the present nomenclature, this is

given by

Ay, B) = 2In 1+—“——} B =2t @.11)
[ Vet (@)

Use of this correlation is restricted to relatively small 3 values [10-13]. Tien and Ling

[23] have proposed a simple two parameter correlation for A (u, 3) as
A(u) = sinh™ (u) (2.12)

which is valid only for the limit of large 5. A relatively simple continuous correlation

was introduced by Cess and Tiwari [12,13], and this is of the form

u

A(u,f)=2In |1+ (2.13)

1
24, /u(1+4)
where § = % = %rg. By slightly modifying Eq.(2.1.13), another form of the wide band

absorptance is obtained as [29]

u

2+,/u(c+ﬁ)

0.1, 8 <landalluvalues

A(w,f)=2In |1+ (2.14)

where

c= 01, g>1landu <1

0.25,8 > landu > 1.
Equations.(2.1.11) and (2.1.14) reduce to all the limiting forms [10]. Based on the

formulations of slab band absorptance, Edwards and Balakrishnan [20] have proposed

the correlation

A(u)=1n(u)+El(u)+7+%—E3(u) (2.16)
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which is valid for large 5. For present application, this correlation should be modified
by using the technique discussed in [12,13]. Based upon the formulation of the total
band absorptance from the general statistical model, Felske and Tien [21] have proposed

a continuous correlation for A (u,3) as

A(u,8) =2E1 (to) + 1 (B) - B [(B)a+ 21)|

2
Lpu)” | 2y @2.17)

(1+2t)

SEIRE

The absorptance relation given by Eq.(2.1.17) is another simple correlation which is valid

+In

where

for all path lengths and for t = (4/2) 2 1. The relation of Eq.(2.1.16) can be treated as
another correlation applicable to gases whose spectral behavior can be described by the
Elsasser model. In ref. 13, Tiwari has shown that Elsasser as well as random model
formulations for the total band absorptance reduce to Eq.(2.1.17) for t 2 1.

Band absorptance results of various correlations are compared and discussed in some
detail in [12,13] and [24]. It was found that results of these correlations could be in error
by as much as 40 % when compared with the exact solutions based on different models.
Felske and Tien’s correlation was found to give the least error when compared with the
exact solution based on Elsasser model. The results of Cess and Tiwari’s correlations
followed the trend of general statistical model. Tiwari and Batki’s correlation [Eq.(21.16)
or (2.1.17)] was found to provide a uniformly better approximation for the total band
absorptance a—t relatively high pressures. The sole motivation in presenting the various
correlations here is to see if their use in actual radiative processes made any significant
difference in the final results.

In Ref. 24, use of several continuous correlations for total band absorptance was
made to two problems to investigate their influence on the final results of actual radiative

processes. For the case of radiative transfer in a gas with internal heat source, it
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was found that actual center-line temperature results obtained by using the different
correlations follow the same general trend as the results of total band absorptance by
these correlations. From these results, it may be concluded that use of the Tien and
Lowder’s correlation should be avoided at lower pressures, but its use is justified (at
moderate and high pressures) to gases whose spectral behavior can be described by the
regular Elsasser band model. For all pressures and path length conditions, use of the
Cess and Tiwari’s correlations could be made to gases with bands of highly overlapping
lines. In a more realistic problem involving flow of absorbing emitting gas, results of
different correlations (except the Tien and Lowder’s correlation) differ from each other
by less than 6% for all pressures and path lengths. Use of Tien and Lowder’s correlations
is justified for gases like CO at moderate and high pressures. For gases like CO,, use of
any other correlation is recommended. While Felske and Tien’s correlation is useful for
all pressures and path lengths to gases having random band structure, Tiwari and Batki’s
simple correlation could be employed to gases with regular or random band structure

but for p 2 1.0 atm.



Chapter 3
LAMINAR FLOW BETWEEN PARALLEL PLATES

This chapter covers the development of different types of formulation for steady
laminar flow of absorbing-emitting, constant property, incompressible gas through two
parallel black plates. Basic formulation for such a flow is given in Sec. 3.1. Gray gas
formulation is developed with limiting cases in Sec. 3.2 and Nongray formulation is

given in Sec. 3.3.

3.1 Basic Formulation

The physical model for the parallel plate geometry is shown in (Fig. 3.1.1).
For radiation participating medium, the equations expressing conservation of mass and
momentum remain unaltered, while the conservation of energy for such a flow is given
as{1]

DT . DP :
pCp—D—t = dw (kVT) + ﬁT—Bt— + p® — divgr 3.1

where y is the dynamic viscosity, 8 is the coefficient of thermal expansion of the fluid
and & is the Rayleigh dissipation function.

The Condition of uniform surface heat flux for each plate is assumed such that the
temperature of the plates varies in the axial direction. Fully developed heat transfer is
considered and axial conduction and radiation is assumed to be negligible as compared
with the normal components. In other words, this represents physical conditions of a

large value of Peclet number[1]. Consequently Eq.(3.1.1) can be expressed as

oT  oT T dp ol .
halill | = k=—= = — - 2
pCp[uax-I—vay] k8y2 +ﬁTudx+u[ay] divgp (3.2)

11
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If in addition, it is assumed that the Eckert number of the flow is small, then Eq.(3.1.2)
simplifies to

or oT 8*T 1 Oqgr

or oT _ _ 33
Yoz Ty T %32 T oG, By (3-3)

where a = (k / pC;) represents the thermal diffusivity of the fluid.
For a steady fully developed flow, v = 0 and u is given by the parabolic velocity

profile as
u=6un (E-€) ; €= % G4

where un represents the mean velocity. Also for the flow of a perfect gas with uniform

wall heat flux, %% is constant and is given by
oT 20eqy
—_ = 3.5
Oz umL/k (3:5)
Now, by combining Eqgs.(3.1.3-3.1.5), the energy equation is expressed as
T  12q, 5 18qr
—— W = === .6
57 "Ik T8 T Ty 3.6
Upon defining nondimensional temperature as
(T -T)
f = *—o—-s 3.7
(quwL/k)
the energy equation, Eq.(3.1.6), is expressed as
%6 1 Oqp
_ = 12 — £ = ——— (3.8)
oz~ P =
The boundary conditions for this problem can be expressed as
At the surface; 8(0) =6(1) =0 (3.9a)
1 dé
At ==~ - 2 _ g, = dgp = 3.9
£Q’d§ 6 =0andgpr =10 (3.9b)

dé de
= =—[= 39



14
It should be noted that all the boundary conditions given in Egs. (3.1.9) are not
independent and any two conditions can be used to obtain solutions.

Equation. (3.1.8) can be integrated once and using the boundary condition, one can

obtain another form of the energy equation as

6 —2(3¢8% - 26%) + 1 = (3.10)

For flow problems, the quantity of primary interest is the bulk temperature of the

gas, which may be expressed as [11]

_B-T) _ )
6 = L /e(e)s &) @.11)

The heat transfer qy is given by the expression, g, = h.(Th — T;), where he is
the effective heat transfer coefficient (W/cm?—K). In general, the heat transfer results
are expressed in terms of the Nusselt number, Nu = h.Dj/k. Here, Dy represents the
hydraulic diameter, and for the parallel plate geometry it equals twice the plate separation,
i.e., Dy = 2L. Upon eliminating the heat transfer coefficient he from expression for qw
and Nu, a relation between the Nusselt number and the bulk temperature is obtained as

2Lqy 2

—_— = = 3.12
k(T —Ty) 65 G.12)

Nu =

The heat transfer results, therefore, can be expressed either in terms of Nu or 8. In
order to accomplish this, a proper formulation for the radiative flux appearing in Egs.
(3.1.8) and (3;.1.10) must be provided.

As discussed in Chap. 2, the expression for the radiative flux is formulated in
terms of the absorption coefficient, which in turn is a strong function of frequency.
Probably the greatest simplification in formulating the radiative flux model is the gray
medium approximation. This is discussed in the following section. The gray medium

approximation also serves as an initial step toward nongray analyses.
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3.2 Gray Gas Formulation

In gray gas formulation (gray-medium approximation), the absorption and the scat-
tering coefficients are assumed to be independent of the wavelength. For a gray non-
scattering medium with black bounding surfaces the equation for radiation flux can be

given as [1]

qr = QUTfE;; (r) - QGT;E;; (t—1)

To

+ 20/T4(t)E2(r—t) dt — 20/T4(t)E2(t—7') dt (3.13)

0 T

where
L 1

y
J 3
r=[xwdy . m= [r@dy . By = [ et
0 0 0
In the preceding equations, E;(t) are the exponential integral functions, and 7 and 7,

represent the optical coordinate and optical path, respectively. For exponential kernal
approximation,

Ey(t) ~ Se™%: By (t) ~ —;-e_%t (3.14)

w | w

Consequently, Eq. (3.2.13) is written as

_2 —3(r,—
qr = oTfe ™ — gTje 7(ro—7)

+ gae—%f / T (t) e¥tdt — gae%f / T (t) e~ 3tdt (3.15)

0 T

Upon differentiating Eq. (3.15) twice, the integrals can be eliminated and the

following expression is obtained

d’qp 9 dT?
iR 3o 1
dr? 4R 3o dr (3.16)

For linerized radiation Eq.(3.16) becomes

d*qp 9 3 dT
Zop = T3 3.17
dT2 4qR 120 w d‘r ( )
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By defining dimensionless quantities

T-T,
8 = LA o = KpL
wL/k T, Kp
y T
4 _ L 3.18
¢ L To ( )

where «p is the Planck mean absorption coefficient, Eq. (3.17) can now be written as

d’qp 9, 120T372] dé
—38 2 = |——wo | — 3.19
dg? g oIk [ ki ] qdf (3.19)

In obtaining Eq.(3.19), it has been assumed that the absorption coefficient (not the Planck
mean absorption coefficient) is not a function of temperature. This is consistent with the

assumption of constant fluid properties in the medium. The boundary conditions for

1
QR(§ =0

qR(O) -% (%%?) (3.20)

Eq.(3.19) are found to be

Using the dimensionless quantities defined by Eq. (3.18) the energy equation given
by Eq. (3.8) is expressed as
d*¢ 1ldqp

£-¢%) = - -== (3.21)
2¢-8) =g~ T
For this case, the boundary conditions become
dé (1
= = 2) = 3.22
=0 i F(3)=0 6.2

Equations (3.19) and (3.21) can now be solved simultaneously and the following

result is obtained for the bulk temperature

%::cl24-1muy+mﬁ+(hﬁ-42M1—2@e-M1 (3.23)
12y 1Ty 17

C5MP T T0ME 0
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where
Mi= %r,,? +
120T312
7=
kkp
_ 2
Cl T 48 3T01M1 + 36TO (3‘24)

T M (37, (1— e M) 4 2M, (1 + e )
The bulk temperature can be easily calculated from Eq.(3.23) for any gas once the
Planck’s mean absorption coefficient «p is known.

Two limiting solutions can also be found for large and small optical thicknesses.

These are called optically thin limit and optically thick limit solutions.

3.2.1 Optically Thin Limit

The solution in the optically thin limit is obtained by making use of the parameter

M, defined in Eq. (3.24) as
2 9,
Mi = ZTO + 7 (3.25)

In the optically thin limit 7, —> 0 and, therefore,

lim (MH->m lim (M) = A1 (3.26)
Consequently,
lim (C) = — 24 (3.27)
] To—>0 712 (1 +e—\/‘ﬁ)
The expression for the bulk temperature in thin limit, therefore, is obtained as,
24 2 12
O )ihin = = 24— 12y + (v - 12T - 24) V] - =
7i (1+e7V) m
1 (576 [1—e VM
O6)ipin = —5 — 288 + 247, — 2.4 2}
( b)thl 7;} {ﬁ [:1+6_ﬁ] T g4

(3.28)
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3.2.2 Optically Thick Limit

In the optically thick limit 7,— > oo. From the definitions of 4 ; and M; given

in Eq. (3.24), it is obvious ;herefore 7, >> 1, M; >> 1. Equation (3.23), therefore,

reduces to
17 17 4
)iy = —— + — | ——————— 3.29
( b)th:ck 70 + 70 N (3 + %) ( )
and rearranging the terms, a simpler form is obtained as
17 1
0):p = —— | ——— (3.30)
( b)th:ck 70 |1+ (3?’7)]
where,
_ krp
- 40T3

3.3 Nongray Formulation

In this section, formulation of the problem under realistic conditions is tried. Under
realistic conditions the gas is not gray, that is the band parameters are functions of
wavelength. Now, for solving Eq.(3.1.10), first we need to get equation for radiative
flux. The radiative transfer equations are formulated for one-dimensional planar systems.
For diffuse boundaries and in the absence of scattering, the expression for the radiative

flux is given as [1]

qra(Ta) =2B12E3(1y) — 2BprE3 (100 — 72)

Tx Tox
+ 2 /eb,\ (t) E, (T,\ —t)dt — /eb,\ (t) FE, (t—T,\)dt (3.31)
0 TA
where
y L
n=[hd s o= [l (3.322)
0 0

1
E.(t) = / p2e"wdp (3.32b)
0
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In the preceding equations, E,(t) are the exponential functions, and 7, and 7.,
represent the optical coordinate and optical path, respectively. The quantities B, and
B,, represent the spectral surface radiosities, and for nonreflecting boundaries, Eq.(3.31)
is expressed in terms of the wave number as [35]

QRw(Tw) = €lw — €2
Tw

+2 / Fio () Ey(ro —t)dt — | Fo () Ey(t —7,)dt|  (3.33)

0 Tu
where
Filo(t) =eu(t) — e ; Fauw(t) = e, (t) — e
Equation (3.33) is the general equation for one-dimensional absorbing-emitting
medium with diffuse non-reflecting boundaries. For nongray analyses, it is often con-
venient to replace the exponential integrals by appropriate exponential functions. Upon

employing the exponential kernal approximation

E,(t) = %exp (—%t) , E1(t) = %emp (——%t)

Equation (3.33) is expressed in physical coordinates as

dRw (y) = €lw — €y

y _ -
-{-;/FmJ (z) kyexp _gk“’ (y—2)| dz
) I ]
L -~ -
3 3
-3 /qu (2) koexp _Ekw (z—y)| d= (3.34)
. J L |

where z is a dummy variable for y. In obtaining Eq. (3.34) it has been assumed that
temperature differences in the medium are small and k. is independent of temperature.

This is consistent with the assumption of constant properties within the medium.
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As discussed in Chap. 2, the total band absorptance can be expressed as

oo

Ay) = ][1 —ezp(—koy)dw ~cem™! (3.35)
0

where both k., and « have units of cm—!, Differentiation of Eq.(3.35) gives

A (y) = / koezp(—kyy)dw ~cm™? (3.36)
and -
A'(y) = / ~k2exp(—kyy)dw ~ cm™ (3.37)

0
Equations (3.35)-(3.37) are employed to express Eq.(3.34) in terms of the band absorp-

tance.

The total radiative flux is given by

o0
an(®) = [ ar(v)do (338)
0
such that
dqs (v) / dgps , _ 4 / s (3.39)
Y
0
Upon substituting Eq.(3.34) in Eq.(3.38) there is obtained for a multiband gaseous system
r(y) =e1-ext+3 Z / (3.40)
= IAw
7 3
{/Fw, (2) ku,exp [—'ék“" (y - z)] dz
0

L

- [ Bk [ e ] s b

y

It should be noted that the following relations have been used in obtaining Eq.(3.40)

oo o
Jerdw =€ ; [epdw = e
0 0
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7{]Flw (2) kyexp [—-g—kw (y — z)} dz} do =
o Lo
Xn: / {/yFlw. (2) ko, exp [—gku‘ (y — Z)a'z] } duo;

i=1
Aw; 0
where n represents the number of bands in a multiband system.

By utilizing the definition of the band absorptance and its derivatives as given by
Eqgs.(3.35)~«3.37) and evaluating the value of the Planck function at the center of each

band, Eq.(3.40) is expressed as
3 | 3
2r(y) = e - +§;{/me )4 |5 -2)|d:
1= 0

_ /LFM (z) A; [-2—(2’ — y)} dz} (3.41)

y

where wo; represents the center of the ith band.
Equation (3.41) is in proper form for obtaining the nongray solutions of molecular
species. However, in order to be able to use the band model correlations, this equation
must be transformed in terms of the correlation quantities defined in Chap. 2. The

following quantities, therefore, are needed for the transformation

u= (-Ai) DY Uy = (Ai) PL; PS = /kwdw (3.42)
0 o A

Now, by using the definition A = 4L, Eq.(3.36)-(3.37) are written as,

- qrn_ Qo 1dA(y) _ A'(y) -1
A= [A(y)] = i 4 - A ~em (3.43a)

vy g GA(Y) dA (u) du] _ T

AW =4 <, [ | =PSMA () (3.43b)
A'(9) = [PS(TF () 3430

The dimensions of both sides in Eq.(3.43b) and ( 3.43c) agree with the dimensions
given in Eqs.(3.36) and (3.37). By employing the definitions of Egs.(3.42) and (3.43),
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Eq.(3.41) is expressed as

u,
3« = [3
qr(u) = e; — ex + 3 EI Aog{/Flw‘ (u:) A I:E (ui — u',)] du
1= 0

_ / Fou, (u]) A B- (ui—u;)] dug} (3.44)

where u' is the dummy variable for u and A’ (u) = HA It should be noted that F; ; and
F,_; in Eq.(3.44) represent the values of F;, and F,_, at the center of the ith band, and
dgr _ (dgr du) _ [PS(T dgr
&= (%) (&) - [0 ()

By defining the new independent variables as

(3.45)

] ™

_t_¥Y g X_
6—uO L ? 6 U

Eq.(3.44) can be expressed as

£
3¢ n g [3 NP
qr() = e1 — ez + 52;/40;'%{{/[’"1% (¢ A; [5%;' (E—ﬁ)J d
= 0
1

[ e €) [ - 0] } 00

where again A’ (u) denotes the derivative of A(u) with respect to u, and %f =
(%) () = (&) (%)

Equations (3.44) and (3.46) allow us to make use of the band model correlations for
the wide-band absorptance because these correlations are expressed in terms of u and 3.
However, it is often desirable and convenient to express the relations for qr and div qr
which only involve A (u) and A’ (u) but not A” (u). This is accomplished by integrating
the integrals in the above equation by parts. This results in simpler integrals. Upon

performing the integration, Eq. (3.46) is expressed as

qr(§) = e1 — ez + gg;Aoi{/ [de:}'g(,{ )] "[ uoi (€ — 5)]

/1 [detl'g('&'] [gu' (f'—é)] dé’} (3.47)
¢
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By differentiating Eq. (3.47) using the Leibinitz formula, there is obtained

el R G

e afpmie-o]e] on

d‘IR
= = Z Apitlos {

/
!

Equations (3.47) and (3.48) are the most convenient equations to use when employing

the band-model correlations in radiative transfer analyses.

For the present physical problem, e; = e; and F,_; = F,_;. Thus, for the case of

linearized radiation, a combination of Eqs.(3.10) and (3.46) results in [29]

§ —2(32-26) +1= —2— (——) ZHl,uo,
{ j 0(6) A | Ju (6 - )] ¢
/ 6(¢) A [—ua, G —g)} dg'} (3.49)
H

n
where Hl,' = Ao,' (T) (%)Tl 3 Hl = Z H],‘
1=1
A combination of Eqs.(3.10) and (3.48) gives an alternate form of the energy equation

for the steady case as

' L\ ¢
¢ —2(3¢2-26) + 1= (E)ZH“

=1

(/)4 [pmic-0)]«
@) afeole) am
§

(=]
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Note that this equation can also be obtained directly by integrating the left hand side
of Eq. (3.49) by parts. Equations (3.49) and (3.50) provide two forms of the energy

equation for the steady-state conditions.

For the case of negligible radiation, Egs. (3.49) and (3.50) reduce to
¢ = 2(3¢2-26%) -1 (3.51)
The solution of Eq.(3.51) is found to be
6(¢) =¢€(26°-¢6-1) (3.52)

Thus, a combination of Eqs. (3.11) and (3.52) gives the result for the bulk temperature

for the steady case with no radiation as
17
0, = —— = —0.24286 3.53
b 5 (3.53)

This result is useful in determining the extent of radiative contributions.

3.3.1 Optically Thin Limit

In the optically thin limit [1], A(u) = u, 4’ (u) =1, and A” (u) = 0. In this limit,
therefore, Eqs.(3.49) and (3.50), reduce to

£ 1

Joe)ae - /mdg} 659

g —2(3¢-26) +1 = gN

<
[

€
5
@
o
2
I
—~
*_I“U
AN
~——
=
Il
—
)_I"U
=
~—
NgE
n
S
~—~
&-JF%
E
~—
~
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The differentiation of Eqs.(3.54) and (3.55) yields the same energy equation for the

optically thin limit as
8" — 3N§ = 12 (¢ - &%) (3.56)

The solution of Eq.(3.56) satisfying the boundary conditions #(0) = 0 and 6(1) = 0 is

found to be

0@ = (337) rnh (_@)} cosh [\/?,_N (e - 1)]

3N?/ | sinh (\/3—1\7) 2

4\ (., 2
@)e-3)

Alternatively, the solution of Eq.(3.57) is written as

8(¢) =Cyexp (VmE) + Crexp (—v/me)
+ (#) (24 —12m& + 12m¢?) ; m = 3N (3.58)

The constants C; and C; are obtained by using the boundary conditions 6(0) = 0 and
' (1/2) = 0, and the solution for (¢) is found to be

2 (e e
6(¢) = (-n%) { ( 1+e-ﬁ) (e7vme/me 4 eV } (3.59)
+ 24 — 12m¢ + 12mé?

Equations (3.59) and (3.3.60) should produce identical results. The expression for the

bulk temperature, in this case, is obtained by combining Egs.(3.11) and (3.59) as

_ o
= 58 1= 288 24 12 (3.600)
mi |1l+evm m?  m? 5m
9, = | —2 { 576 NEXP — 21.6N? 4 79N — 288} (3.60b)
PN WVBN T ' '

where

-V3N
NEXP = oo
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3.3.2 Large Path Length Limit

In the large path length limit, u,; >> 1 for each band of interest and Au) =

In(u), A'(u) = L, and 4"(u) = —% [29]. Thus, in this limit Eqs. (3.49) and

u')

(3.50) reduce to

F_ 2 3 0(‘5) 3.61
§' — 2(3¢* —2¢°) M/(é 5, (3.61)

N (€ T
§

where M = = (§) S Au (%) 1,

Through integration by par?s1 it can be shown that Eq.(3.62) reduces to Eq.(3.61). The
non-dimensional parameter M constitutes the radiation-conduction interaction parameter
for the large path length limit. Equation (3.61) does not appear to possess a closed form

solution; a numerical solution, however, can be obtained easily.



Chapter 4
LAMINAR FLOW THROUGH CIRCULAR DUCT

This chapter covers the development of different types of formulation for steady
laminar fully developed flow of absorbing-emitting, constant property, incompressible
gas in a circular duct. Basic formulation for such a flow is given in Sec. 4.1. Gray gas

formulation is developed in Sec. 4.2 and nongray formulation is given in Sec. 4.3.

4.1 Basic Formulation

The physical model for the circular duct geometry is shown in (Fig.4.1). For radiation
participating medium, the equations expressing conservation of mass and momentum
remain unaltered, while conservation of energy for such a flow is given by the same

expression as Eq.(3.1), i.e.,

DT , DP :
pCpE = dw (kVT) + ,BT—Bt— + pu® — divgp 4.1)

Under similar conditions as mentioned in Sec. 3.1, Eq.(4.1) can be written in circular

coordinates as

oT ad (0T 110
— = (r—=] - === 4.
Yoz r Or (T 07') pCypr Or (rar) 4.2
By noting that for a uniform wall heat flux and fully developed heat transfer
oT 2aqy,
= - 4.3
Oz UmTok 43)

and by employing the parabolic laminar velocity profile for u given by

2
‘= 2u, [1 _ (l) ] 4.9)
To

27
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Eq. (4.2) can be written as
2
r T k 8 (0T 10
- - —_ = —=[r—=] - ——= 4.5
: l:l (TO) } (ro) qu Or (r 07‘) qw Or (qu) *-5)
By noticing that for the case of a circular duct v = C2Pr and u, = C?Pr,, Eq. (4.5)

is expressed as

u )2 u k 0 oT 1 0
— [ — —_ ) = — —_ ) e — 4.6
4 [1 (uo) (uo) qw C”Pau (u au) qQu Ou (uqR) (4.6)

Defining non-dimensional quantities

T u
6 = —_-— = —
To Uo

_ 2

Eq.(4.6) can be rewritten as

o (.08 10
. _zz_(_)___ 4.8)
(6-¢" = z¢ ¢3¢ ) ~ o3¢ aw) (
The boundary conditions for this case are given as
g0 =0
6(1) =0 (4.9)

Integrating Eq.(4.8) once and by noting that at £ = 0, (00/0¢) = Oand gr = 0,

we get
6 + €3 — 2¢ = L&) (4.10)
qw
For the circular geometry, the bulk temperature is defined as
27 1o
1
] 0, = — /u(r)ﬂ(r)rdrdg ‘ 4.11)
0 0

A combination of Egs. (4.4) and (4.11a) results in
1

8, = 4/(5—53)0(5) d¢ (4.12)
0
The Nusselt number based on the hydraulic diameter Dy, = 2r, is given as

N = 2roqw 2

"TET-T) @ w1



4.2 Gray Gas Formulation
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For a gray non-scattering medium within a black bounding surface, the equation for

radiative flux can be written using the exponential approximation as [29]

a1t

d[1d 9
{ (r qn)] - —qua = 3oKp——

dr |7 dr

For linearized radiation Eq.(4.13) can be written in dimensionless form as

422 (eqn)| - =
where
120k, Tor?  120T37}
Y2 = Z wlo = kn: o’ To = KpTo
Boundary conditions for Eq.(4.14) are
3 1
qr(0) = 0
Equation (4.8) can be integrated once to give
_ 4R (f) 3 Cl
=z +2
df qu $-¢- E

Equation (4.14) and (4.16) are combined to give

d? d
&= dgqf + 5% — (M7 +1) gr = 71290 (26° = & ~ C1€)

where
M3 = %7'3 +72
The solution of Eq.(4.18) is found to be

ar = Cay (Maf) + 3K (Maf) + 202 (M3E* + 8¢ — 2M3¢)
2

For a finite solution as £ —> 0, C; must be taken to be zero and

gr = CoIy (Ms€) + ”A/_,q;" (MZE + 8¢ — 2M2¢)

4.14)

4.15)

(4.16)

(4.17)

(4.18)

4.19)

(4.20)

4.21)



31

From Eqs.(4.16) and (4.20), there is obtained

Coly (My) + 222 (8 — M3)
M;

2 d . 1672qw
=3 {C’z [Il (M) + (-(-izh (Abﬁ))f:ljl + S } (4.22)

2
or

31,Co 14 (MQ) + ’)quw ( 471, —~ 3ToM22)
2

= -2C, [Il (M;) + (szo (M) - Mf_))f_l] 32729 @ 23)

£
Cy 137511 (Ma) + 2M, I, (Mp)] = ”Aj;” [37, M2 — 247, — 32] (4.24)
2
and
Co— [ 370 M3 — 241, — 32 ] (’mqw)
27 2M,1, (M) + 37,1, (M) | \ M3

From Eq.(4.2.17) and (4.2.20) one finds

d8 C

C,
— = —I M. M? 8¢ — 2M? 2 -— 4.25)
where from the boundary condition ¢ (0) =0, Cy =0
Equation (4.24) is integrated once to give
0 — Cy I, (M) + 25 +4£2 — M2 ) + €2 —154 —C, (4.26)
T quMy 0N M4 4 2 4
From the boundary condition 6(1) = 0, one finds
Cs v [16 — 3]»{5_) 3
= —=], =
Co = ap M)+ 34 ( Z T3
Consequently, Eq.(4.25) becomes
= q [Io (M2€) — Io (M2)]
1 3
4 2.2 2 2 4 _ 9
+ 4M4 (M2§ + 1662 — 4MF€* +3M7F - 16) + £ — X -1 (4.27)
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The expression for the bulk temperature can be easily obtained as

6 =C [(8—_@]2‘-{-{) I, (My) - E%@}

11 8 712 11
—_ e 4.28
+ 24]”22 3M; 24 (*+.25)

where

c - 72[ 3o M2 — 247, — 32 ]

T MS | 2M,I, (M) + 37,11 (M?)
M?Z= %rf + 72
120k, T3r? 1207372
= k = kkp
To = KpTo

4.2.1 Optically Thin Limit

Recall the definition of M, as
9
M} =270 +m
For optically thin conditions 7 ; —> 0 and, therefore,
1
imr,— >0 (M22) =72 , lim7,— > 0(M;) =%}
32 16

2ml (Vi) vl (Vi)

The expression for the bulk temperature in the optically thin limit, therefore, becomes

lim7,— > 0(C) =

1|25 I (72) 8y2
O )ipin = — | —=—F— — 128 + 1672 — —= (4.29)
Win =33 |V 1 (v "

By employing the series expansion of the modified Bessel functions for small values of

the argument 3, Eq. (4.29) can be written in an alternate form, and by letting y2— > 0

in that form there is obtained the result in the transparent limit (6y),, = —33-
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4.2.2 Optically Thick Limit

The asymptotic series for modified Bessel’s functions for large value of M; are

M2 1 9
N 4.30
I, (M) V2, [1 + 8M, t 128 M} + ] (@
eMa 3 15
o 3 4.30b
I (M) Jor i, [1 8M; 128M?2 * ] @

Substituting for I,(M2) and I;(M,) from Eq. (4.30) into Eq. (4.27) and taking the limit
as T, —> a, we get

11 v 8 72 11
(O)shick = A3 3t

_ = 4.31
M§ 3M§‘ 24 ( )
Defining
_ kkp
T 40T}
372 3 4
72=—Ni and M22=Z<3+N>T3
Eq. (4.31) is expressed in an alternate form as
11 1
Y, = —— | ——— 4.32
( b)thzck 24 1+ (3_4N_)j| ( )

Equation (4.32) also reduces to the correct form for the case of no radiative interaction.

4.3 Nongray Formulation

In this section, formulation of the problem under realistic conditions is presented.
Under such conditions the gas is nongray, that is the band parameters are functions of
the wavelength. For solution of Eq.(4.10), an appropriate equation for radiative flux is

needed. For a circular geometry, the expression for the radiative heat flux in terms of
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non-dimensional path length is given as [39]

u

1r (1) = 4a7{ / {[ch (') = Bye (Tu)] &' (COZ7 (u+u' —2u sin'y))

0 usiny

A (CO’; —(u- u')) }du’

Uo

_ / [Bue (/) = Buc (T)] A’(

u

ryi b ) !
+ A (m (u — u)) }du }d7 4.33)

where a = 1 and b = 5/4. Equation (4.33) is expressed in an alternate form as

(u +u' — 2usin 7))
cos 7y

4R (€) = dau, / { /E { [Buc (€) = Bue (Tu)] &' (”— (¢+¢ ~2%sin7)

oS ¥
0 Esiny
4 (2 (e 0)) bag
v

1
- E/ (B (€) = Buc (Tu)] 4" (oot €+ = 26sin) )

o [ buo ' !
+A (m (¢ - 5)) }d{ }d7 (4.34)

In order to combine Eq.(4.10) and (4.34), the Planck’s function is linearized as,

Buc(€) = Buc (Ta) = = lew (€) — eue (To)]
1 /deg.
~ = ( 7T )Tw (T -T,) (4.35)

Now, a combination of Eqgs.(4.10), (4.34) and (4.35) yields

P-4

a dar, (deyc /
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cos vy

- /l 0(¢) A [—b— (€ - s)] &€
£

+ / 0(5’)&,-’[””" (§+§'-—-2Esin7)] d.f’} dvy  (4.36)

cos 7y
€siny

For nongray gases with n-bands, Eq.(4.36) is written in the following form,

Z

dé 4r,
E‘é _26__21:{”01/{

¢
[ @) a2 -0
£siny
1 _ -
UG P GEDIES
J | .
1
+ [ o) [ )]dg'} &y (437
Esiny

where

= A
)Tw ’ A, = e

Combined solutions of Egs. (4.37) and (4.11) are obtained by numerical procedures.

Hy = Ay (d_de'f"'

4.3.1 Large Path Length Limit

As noted earlier, in the large path length limit u,; >> 1 for each band of interest, and

(ui) = 1/u;. In this limit, Eq. (4.37) reduces to
1

2 oneron o] | o0

€-¢)

Esiny

1
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or

Iz

169 2 9 _ 8aro / o
+&-2= ﬂka cosy (1 —sin¥y)
0

1

VEG (5—5’)(£f€£"—2esinv)]} a9

£siny

The solution of Eq.(4.38) or (4.39) can be obtained either numerically or in closed form.



Chapter §
METHOD OF SOLUTION

The solution procedure for both cases, the parallel plate geometry and the circular
duct, are presented in this chapter. In principle, the same numerical procedure applies to

both the general and large path length limit cases for both geometries.

5.1 Parallel Plates

The general solution of Eq.(3.49) is obtained numerically by employing the method
of variation of parameters. For this, a polynomial form for 8(¢) is assumed in powers

of ¢ as

n

6(6) = D amt™ (5.1)

m=0

By considering a five term series solution (a quartic solution in £) and satisfying the

boundary conditions 6 (0) = 6 (1/2) = 0 and ¢’ (0) = —6’ (1), one obtains
6(¢) = a1 (626 +¢) +az (£ - 267 +¢Y) (5.2)

and

8' (&) = a1 (1 — 662+ 4€3) + ay (26 — 662 + 48%) (5.3)

A substitution of Eq.(5.3) in Eq.(3.49) results in

a1 (1 — 662 +4€3) + ap (26 — 662 + 4€3) —2 (362 - 26%) + 1

(%) Y Hiitoi
i=1

0(¢) A [Fun (- )] €

{
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- /1 6(¢) A [gu (€ - E)] de’} (5.9)
3

where expressions for 6 (¢') are obtained from Eq.(5.2)

The two unknown constants a; and a; in Eq.(5.4) are evaluated by satisfying the
integral equation at two convenient locations (£ = 0 and £ = 1/4 in the present case).
The entire procedure for obtaining a; and a; is described in [35]. With known values of
a, and ap, Eq.(5.2) provides the general solution for 6(¢). The expression for the bulk

temperature is obtained by combining Eqgs.(3.11) and (5.2) as

_ 17a; + 3aq

0 (5.5)

6y

The governing equation for the large path length limit is Eq.(3.61). For this equation
also the solution is given by Eqs.(5.2) and (5.5) but the values of a’s are different in

this case [35].

5.2 Circular Duct

The general solution of Eq.(4.32) is obtained numerically by employing the method
of variation of parameter similar to that discussed in Sec. 5.1. For this, a polynomial
form for 6(¢) is assumed in powers of ¢ as given by Eq. (5.1). By considering a
five term series solution (a quartic solution in £) and satisfying the boundary conditions

6(1) =0, 6"(0) = 0 and §(1) = 6(~1), one obtains
(€) = ar (82— 1) +az (6 - 1) (5.6)

and

6 (€) = 2a1€ + 4azg® (5.7)
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A substitution of Eqs.(5.6) and (5.7) in Eq.(4.32) results in

I

£ (4as + 1)+ 26 (a; - 1) = %Z;Hiuoi/{
= 0

£
i il [ b‘l IW !
JRIGE AR
Esiny
1 F b -
Jo@) il | g€ -0)a
£
1
n g! bi ! : !
v [ o) al [ 2o e e - aesing)| de} &5.3)
Esiny

where expression for 6 (¢') are obtained from Eq.(5.7).
The two unknown constants a; and a; in Eq.(5.8) are obtained by satisfying the
integral equation at any two locations of ¢. The entire procedure is described in Appendix

A and relations for the constants are expressed as

a; = ((zz104) — (22202)) /DEN 5.9
az = ((22201) — (22103)) /DEN (5.10)
DEN = (ala4 - C!zag) (5.11)

The quantity appearing in Eqs.(5.9)-(5.11) are defined in Appendix A.
Now, with known values of a; and a,, Eq.(5.6) provides the general solution for 6(£).

The expression for the bulk temperature is obtained by combining Eq.(4.11) and (5.6) as

2 S
- 2, _ = 5.12
) 591~ g% (5.12)
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The governing equation for the large path length limit is Eq.(4.34). For this equation
also the solution is given by Eq.(5.6) but the values of a; and a; are different. In large path
length limit, the integrals can be evaluated in close forms. Procedure is described briefly

Equation (4.34) is expressed in an alternate form as

r

2

1
+£3 26 = M/cos /9({')[ & + ad - jld‘)’ (5.13)

df o (€-¢) (E+¢& —2siny)
sin
where
M=igy H = 1 i HAt € = 172, Eq. (5.13) becomes

; 1
1 7 1 1
ay + -a ——=]\/I/COS / (¢ + - de'd (5.14)
1 2 Y (€) T—¢ ' T5 ¢ —sny §dy

Substituting for §(¢') in terms of a; and a, as given by Eq. (5.6), and rearranging

Eq.(5.14), one obtains

3

r 2 2 _ 1)1
—Z=a1 —1+M/ os'y/ (¢ Y —(6 ) d{'d'yf

8 _%+£’—sin7 ¢ -1 ]
1siny
3

[ " _ 1 " _q 7
+ a; —-+M/c057 / %f—gﬁ’—si)n'y- (i'—%) d¢'dv 3 (5.15)

-sm-y N )

By evaluating the inner integral Eq.(5.15) is expressed as
f 3
——=a1{—1+M/cos7[(sin27—sin7——z) In(3 — 2sinvy)
0
. 2 . . 1., 3 .
— (sin ¥ —sin7y) ln(l—sm'y)—55m ‘y+§sm7—1 dy
1
+a2{~§+M/cos7[<sin47—23in37+gsm 7—ésm7——i§)
0
. . 4 . 3 3 . 2 1. .
In(3 - 2siny) — | sin® v — 2sin 7+§sm Y- gsiny In(1—sin%y)

7 17 11 23 2
——E-}—-z-zsmy—l—ssm 7+i—2-51n 7—§sm 'y]d‘/} (5.16)
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Now solving these trigonometric integrals and simplifying, one obtains

_% =a1{ 1+ M [1—2-—§Alog(3)]}

1 207 121 13 11\ 123
- By, (L_2 5.17
ta { ; tM K 160183 ~ 350 * 12) + (25 12) 360] } )

Equation (5.2.17) can now be written as

—% = a1y + a9 (5.18)

where ! 9
ap= —-1+M [— — —Alog(3)]

19 207
ar=—-5+M [Zé’ﬁ‘“ (3)]

At £ = 1, a similar solution procedure yields the result

-1 =aja3 + axay4 (5.19)

where

a3 =—-2+M [—zAlog(Q) - %] (5.20)

=—4+M [—gAlog(Q) u

Now, with known values of a; and a;, Eq. (5.6) provides the general solution for

6(¢) and the bulk temperature is given by Eq. (5.12).



Chapter 6
RESULTS AND DISCUSSION

Extensive results have been obtained for variation of temperature (6) and bulk
temperature (6p) at different conditions for all four species in both the cases, and most
of these are available in Appendix B and C. The computer programs used for numerical
solution for both geometries are provided in Appendix D and E. Selected results are
presented here to compare and illustrate the variation of temperature § with £ and of
bulk temperature 6, with plate spacing L or duct radius r,. Variation of bulk temperature
with pressure is also presented to illustrate the effect of large pressure path length and
it’s approach to limit of large uy, much more clearly.

Although the results are similar in nature for both the geometries, they are presented

in seperate sections for clarity.

6.1 Parallel Plates

The results for temperature variations across the duct are presented in Figs. 6.1-6.4.
Figure 6.1 shows temperature profile for H;O at Ty =500 K,P =1 atm and L = 10 cm
with general as well as in the limit of large u,;. This demonstrates that the limit of large
U, overestimates the radiative energy transfer giving a conservative approximation. Thus,
for practical and realistic problems, it might be easier to find out the extent of radiative
interaction using the limit of large u,; formulation and then use the general formulation
which is computationally complex and expensive. Figure 6.2 demonstrates the effect
of higher wall temperatures on temperature profiles. As the wall temperature increases
temperature profile becomes less and less parabolic. In other words, temperature gets

distributed more and more evenly across the duct. The effect of increasing pressure at any
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temperature shows a similar trend (Fig. 6.3). At high pressures, the results approach the
limit of large u,;. The comparison of temperature profiles for the four species presented
in Fig. 6.4 demonstrates the relative importance of each species in energy transfer. Water
vapor (H,0) is the most radiation participating species among the four considered here.
For the physical conditions of Fig. 6.4, OH is the least radiation participating species.

The bulk temperature results as a function of the distance between the plates are
presented in Figs. 6.5-6.9. The limiting value of 8, = —0.243 corresponds to negligible
radiation. For a particular plate spacing L, the large path length results represent the
limiting solutions for high pressures. The results, in general, demonstrate that the effect
of radiation increases with increasing plate spacing.

General as well as limit of large uy; solutions for the bulk temperature are illustrated
in Figs. 6.5-6.7 for H,0. The results for H,O at Ty = 1000 K are presented for P = 1,
2, 5, 10 atm. It is noted that as pressure increases the ability of gas to transfer radiative
energy increases, approaching the correct limiting solution of large uo;. The results shown
in Fig. 6.6 for H;0, demonstrate the effect of increasing wall temperature. It is obvious
that the radiative transfer is more pronounced at the higher wall temperature. The results
presented in Fig. 6.7 illustrate both effects.

Comparison of bulk temperature results with plate spacing for various species is
presented in Figs. 6.8 and 6.9 for a pressure of one atmosphere. The results clearly
demonstrate the relative ability of the four species for radiative transfer at different path
lengths. For lower plate spacings and relatively higher temperatures, however, CO;
shows a signiﬁcantly higher ability than other species. This is a typical distinguishing
feature of the CO, under optically thin conditions[29].

The trend of the general solution approaching the limit of large u,; (large path length
limit) is illustrated in Fig. 6.10. A comparison of results for various species is shown

in Fig. 6.11.
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Figure 6.1 Comparison of temperature variations across the duct for H,0;
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Figure 6.3 Comparison of temperature variations across the duct for HO;
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Figure 6.10 Variation of bulk temperature with pressure for H20;
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6.2 Circular Duct

All results for circular duct are presented in Figs. 6.12-6.22. The results are for the
same species at the same conditions as for the parallel plate geometry. The results, in
general, exhibit the same trend as presented in Figs. 6.1-6.12 for the parallel plate
geometry. However, the extent of radiative interactions is entirely different. This
is because the circular geometry provides additional degrees of freedom for radiative
interactions[39]. Other basic differences are noted below.

Results of temperature variations across the duct are plotted from § = -1.0to 1.0,
because of the difference in the location of the coordinate axes as shown in Fig. 4.1. The
limiting value of 6, = —0.4583 corresponds to the case of negligible radiation. Another
important point to note is that the general solution approaches the limit of large uy; at
lower path lengths than for the parallel plate geometry. Extensive results for circular

duct for all species were obtained. Some of these results are included in Appendix C.



0.80

0.70

0.60

0.20

0.10

0.00

-1.00

56

11|11|111|1111!111111111111111111111111

Gas : H,0
Tw = 500 K
o =5 cm

S

~

P

LLU (Limit of Large ug) —" “\

N

N

A

IIIIllr[lrlllllrlllllllllllll[TIlllllTr

0.00

g

=0.50

0.50

1.00

Figure 6.12 Comparison of temperature variations across the duct for H,O;

Tw =500 K, P =1 atm and r,

5 cm.



57

0.80

Gas : H;0O
P=1atm
o =5 cm

0.70

0.60

0.50

(T-T,)
(qro/k)

0.20

0.10

0~OO llIllllIl|lilfﬁill[lllilllll[ITIlITIIU

-1.00 -0.50 0.00 0.50 1.00

Figure 6.13 Comparison of temperature variations across the duct for H;O;
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Chapter 7
SUMMARY AND CONCLUSIONS

A brief review is presented on various band models and band model correlations
that are useful in nongray radiative transfer analyses. Different formulations for one-
dimensional radiative flux are provided. These are used to develop the basic governing
equations for energy transfer in gaseous systems.

Analytical formulations and numerical procedures have been developed to investigate
the radiative interaction of absorbing-emitting species in laminar fully developed flows
between parallel plates and through a circular duct. Extensive results have been obtained
for OH, CO, CO3, and H,O for different physical conditions. Illustrative results for the
temperature distribution and bulk temperature are presented for different pressures and
wall temperatures. The general nongray results for the circular duct have been obtained
for the first time. In these results, a lower value of temperature implies a higher ability

of the gas to transfer radiative energy.

The gray and nongray formulations for circular duct has been derived in local
thermodynamic equilibrium. This formulation involves four integrals of which two are
angular, one is spatial, and one is spectral. One angular integral is taken care of by using
exponential kernal approximation [27, 32, 37]. Furthermore, the spectral integration for
nongray formulation is represented by using a total band absorptance. The remaining two
integrals, one angular and one spatial, are computed numerically by multidimensional
quadrature method using Gauss-Kronrod rule [41]. The resulting equations are either
integral or integro-differential and cannot be solved analytically. They are therefore

solved numerically using the method of variation of parameter [1, 35].
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The results, in general, demonstrate that the effect of radiation increases with
increasing plate spacing/radius, and the radiative transfer is more pronounced at higher
wall temperature and pressure. One important fact is that, for all species, the general
solution approaches the correct limiting solution for large ue;. Of all the species, H,0 is
a highly radiation participating species (as compared to CO,, CO and OH). The extent
of radiative interactions is higher in circular duct, because it provides additional degrees
of freedom.

The present study provides different kinds of limiting solutions for both the geome-
tries. These limiting solutions are in closed form and therefore computationally less
expensive to obtain. In many practical and realistic problems the limiting solutions are
very useful to demonstrate the importance of radiative interaction. Finally it is important
to note that any kind of extensive radiation model (line-by-line or narrow band model)

can be easily used in the nongray formulation provided in this study.
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APPENDIX A
DERIVATION OF CONSTANTS FOR CIRCULAR DUCT

To determine constants in Eq.(5.6), Eq.(5.8) is evaluated at any two convinient
locations. To avoid excessive writing, the following notations are used

by = bu,,

! 1 (A.1)

E buo;

C; =

where

b=
Rewriting governing Equation for circular duct using the quantities defined in (A.1)

oo

I

gy s—ﬁZHum/{

o[ b N '
JRIGE (e-¢)| e

6

- /0(5’).4.’ r (¢ —E)‘ d¢’

| cos ¥

+ / 9(5')fia [C087(€+£ ——2£sm7)] d{'} dy (A2

Esiny

Assuming solution of the form (A quartic solution in £)

8(¢) = A1 (€ -1) + A2 (¢* - 1)

Q’(f) = 24;£ + 44,¢6° (A.3)
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By defining u = i (¢~ ¢') for the first and the fourth integrals, u = g _ ¢

cos v cos 3
for the second and the fifth integrals, and v = C—f;—,/— (€ + &' — 2€ sin+y) for the third and
the sixth integrals in Eq.(A.4) and changing the limits respectively. And substituting for
6 (5) from (A.3) into Eq.(A.2) and rearranging, equation in terms of changed variables is
obtained. The integrals with the changed variables are solved individually and then added
up as defined in Eqgs. (5.9) and (5.10). The procedure adopted to evaluate constants a

and a; is similar to one applied in Ref. 39.
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APPENDIX B
ADDITIONAL RESULTS FOR LAMINAR FLOW OF NONGRAY
GAS THROUGH PARALLEL PLATE PLATE GEOMETRY

Extensive results obtained for laminar flow of nongray gas between two parallel
black plates are presented here for reference purposes. The results are for species CO,
OH, CO,. Results for temprature variations across the duct as well as variation of bulk
temprature with plate spacing and pressure are presented. All the results show similar

trend as discussed for Figs. 6.1-6.12.
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Figure B.1 Comparison of temperature variation across the duct for COg;
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APPENDIX C
ADDITIONAL RESULTS FOR LAMINAR FLOW
OF NONGRAY GAS THROUGH CIRCULAR DUCT

Extensive results obtained for laminar flow of nongray gas black circular duct are
presented here for reference purposes. The results are for species CO, OH, CO;. Results
for temprature variations across the duct as well as variation of bulk temprature with

plate spacing and pressure are presented. All the results show similar trend as discussed

for Figs. 6.13-6.22.
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The

APPENDIX D
PROGRAM LISTING FOR LAMINAR FLOW OF
NONGRAY GAS THROUGH PARALLEL PLATE DUCT

listing of the FORTRAN program used for numerical procedure is given here.

The program is coded on UNIX based SUN 386i. Input file consists of all the band

parameters for different species[29]. The program uses romberg cautious integration

routine for numerical integration purposes. The listing of romberg integration is not

given here, but is available in IMSL libraries.

program PLATE

kfb Thermal Conductivity of any Gas
real 1,kfb

n No. of Bands for the Gas
parameter (n=2)

external fpkO0, fpkl, fpk2, fpk3, fpk4
dimension fi(n),bi(n),hi(n),eps(3)
common /func/f,b

open (5, file=' INPUT')

rewind (5)

open (6, file='0OUTPUT’)

rewind (6)

eps (1) Absolute Error Desired
eps(2) Relative Error Desired

eps(l) = 1.0e-6
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eps(2) = 1.0e-6
do 333 i = 1,656

read (5, *)t,pr,1, (fi(k),k=1,n), (bi(k),k=1,n),

(hi(k),k=1,n),kfb
am = 1/kfb
hsum = 0.0
suml = 0.0
sumZ = 0.0
sum3 = 0.0
sumd4 = 0.0

do 111 k = 1,n

f = fi(k)
b = bi (k)
h = hi (k)

hsum= hsum+h

cu =1./b
Cus = cu*cu
cuc = cu*cus

cug = cu*cuc

x = 0.0
Numerical Integration
Cautious Romberg Integration
call cadre(x,b, fpkl,eps,0,rrl,irl)
call cadre(x,b, fpk2,eps,0,rr2,ir2)
call cadre(x,b, fpk3,eps,0,rr3,ir3)
call cadre(x,b, fpk4d,eps,0,rrd,ir4)

suml = suml+ (h* ((cu*rrl)-(2.*cuc*rr3)+ (cug*rrd)))
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111

sum?2

P

q
call

call
call
call

call

= gum2+ (h* ((cus*rr2)-(2.*cuc*rr3) + (cug*rrd)))
= b/4.
= (3./4.)*b

cadre (p, g, fpk0,eps, 0,ss1,1isl)
cadre (X, p, fpkl,eps,0,s552,1is2)
cadre (X, q, fpkl, eps, 0,ss3,1s3)
cadre (p, q, fpk2,eps, 0,ss4,1is4)

cadre (x,p, fpk3, eps, 0,ss5,1s5)

call cadre(p,q, fpk3,eps,0,ss6,1s6)

call cadre(p,q, fpk4,eps,0,ss7,1s7)

brkl = (57./256.) *ssl

brk2 = (11./16.)*cu* (ss2+ss3)

brk3 = (9./8.) *cus*ss4

brk4 = cuc*(ss5+ss6)

brk5 = cug*ss?

sum3 = sum3+ (h* (brkl+brk2-brk3-brk4+brk5))
brsl = (9./256.) *ssl

brs2 = (3./16.)*cu*(ss2+ss3)

brs3 = (1./8.)*cus*ss4

brs5 = cug*ss’

sumd4 = sumd+ (h* (brsl+brs2-brs3-brs4+brs5))
continue

alphal = 1.0+ (am*suml)

alpha2 = am*sum2

alpha3 = (11./16.)+ (am*sum3)

alphad4 = (3./16.)+ (am*sumd)

constt = 16.*((alphal*alphad)-(alpha2*alpha3))
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constl = (11.*alpha2)-(16.*alphad)

const2 = (16.*alpha3)-(11l.*alphal)
al = constl/constt
a2 = const2/constt

bulk = -((17.*al)+(3.*a2))/70.

call 1lpl(am,hsum,conl,con2,bulkl)
write(6, *)t,pr, 1,bulk,bulkl
else
continue
endif
333 continue
end
function fpk0 (u)

common /func/f,b

den = (f*((u*u)+(2.%u)+2.)+u) *(u+(2.*f))
aud = (f*((u*u)+(4.*u*f)+(4.*f))) /den
fpk0= aud

return

end

function fpkl (u)

common /func/f,b

den (E* ((u*u) +(2.*u)+2.)+u) *(u+(2.*f))

aud (E*((u*u)+(4.*u*f)+(4.*f))) /den
fpkl= u*aud
return

end

function fpk2 (u)
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common /func/f,b

den = (f*((u*u)+(2.*u)+2.)+u)*(u+(2.*f))

aud (£* ( (u*u) + (4.*u*f)+(4.*£f))) /den
fpk2= u*u*aud

return

end

function fpk3 (u)

common /func/f,b

den (f*((u*u)+(2.*u)+2.)+u)*(u+(2.*f))

aud (£* ((u*u) + (4.*u*f)+(4.%*£))) /den
fpk3= u*u*u*aud

return

end

function fpk4 (u)

common /func/f,b

den = (f*((u*u)+(2.*u)+2.)+u)*(u+(2.*f))

(f*((u*u)+(4.*u*f)+(4.*f)))/den

i

aud
fpkd= u*u*u*u*aud

return

end

subroutine lpl(am,ht,conl,conZ,bulkl)

em = am*ht

etal = 1.+((7./12.)*em)

eta2 = (1./12.)*em

eta3d = (11./16.)+(0.583154559%*em)
etad = (3./16.)+(0.127164755*em)
phic = 16.*((etal*eta4)—(eta2*eta3))
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phil = (11.*eta2)-(16.*etad)
phi2 = (16.*eta3)-(l1l.*etal)
conl = phil/phic
con2 = phi2/phic

bulkl= -((17.*conl)+(3.*con2))/70.
return

end
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The

APPENDIX E
PROGRAM LISTING FOR LAMINAR FLOW OF
NONGRAY GAS THROUGH CIRCULAR DUCT

listing of the FORTRAN program used for numerical procedure is given here.

The program is coded on UNIX based SUN 386i. Input file consists of all the band param-

eters for

different species[29]. The program uses Multidimensional quadrature integration

routine using Gauss-Kronrod rule (TWODQ), for numerical integration purposes. The

subroutine is available in IMSL library (Chap. 4, Vol. 2.).

program TUBE

real kfb

kfb Thermal Conductivity of the Gas

parameter (n=1,pi=3.1415926535898)

n No. of Bands in any Gas

external frll,fr12,fr21,fr22,£fr31,£fr32

external o,q,r,s

dimension fi(n),bi(n),hi(n),zi(2)

dimension zz(2),gamal (2),gama2(2)

common /func/f,b,z

INPUT Input Data File with All Properties for
the Gas under consideration.

open (5, file=' INPUT")

rewind (5)

open (6, file='QUTPUT")
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rewind (6)
ea Absolute Error Desired

er Relative Error Desired

ea 1.0e-4

1.0e-4

er
x Lower Limit of Integration for Outer Integral
y Upper Limit of Integration for Outer Integral

x = 0.0

Y (pi/2.0)

zi (1) & zi(2) Two Values of xi.

zi(1l) = 0.5

zi(2) = 1.0

do 333 i = 1,imax

read(5,*)t,p,1, (fi(k),k=1,n), (bi(k),k=1,n),
(hi(k),k=1,n),kfb

am = (3.2*1)/(pi*kfb)

do 222 k = 1,2

z z1 (k)
Xz = 2.%z

Yz = 4,.%(z**3)

zz(k) = (z**3.)-(2.*z)
brkl = 0.0
brk2 = 0.0
hsum = 0.0

do 111 j = 1,n

f

£i(3)

b = bi(j)
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h = hi(])
hsum= hsum+h
—————— Numerical Integration
—————— Multidimensional Quadrature Technique using
------ Gauss—-Kronrod rule.
call twodq(frll,x,y,o,q,ea,er,1,rr11,er11)
call twodq(frlZ,x,y,o,q,ea,er,1,rr12,er12)
call twodq(fer,x,y,o,r,ea,er,l,rer,eer)
call twodq(fr22,x,y,o,r,ea,er,1,rr22,er22)
call twodq(fr31,x,y,q,s,ea,er,l,rr31,er31)
call twodq(fr32,x,y,q,s,ea,er,l,rr32,er32)

brkl

brkl+ (h* (rrll-rr2l+rr3l))

brk2

brk2+ (h* (rr12-rr22+rr32))

111 continue

gamal (k) (am*brkl) -xz

(am*brk2) -yz

gamaz2 (k)

222 continue

alphl = ((zz(l)*gama2(2))—(zz(2)*gama2(1)))

alph2 = ((zz(2)*gamal(l))—(zz(l)*gama1(2)))

alphc = ((gamal(l)*gama2(2))—(gama2(1)*gama1(2)))
al = alphl/alphc
a2 = alph2/alphc
em = hsum*am

call 1lpl (em,conl,con2,bulkl)

bulk

!

—(((-2./3.)*al)+((-5./6.)*a2))

bulkl

-(((—2./3.)*con1)+((-5./6.)*con2))

write(6,*)t,p,r,bulk,bulkl
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if(r.eq.5.0)then
do 11 ii = 1,11

xi = 0.1*float (ii-1)

theta —(al* ((xi**2.)-1.)+a2*((xi**4.)-1.))

thetal

—-{conl* ((xi**2.)-1.)+con2* ((xi**4.)-1.))
write(6,*)t,p,xi,theta,thetal
11 continue
else |
continue
endif
333 continue
end
function frll (x,u)
common /func/f,b,z

(£* ((u*u)+(2.*u)+2.)+u) *(u+(2.*f))

den

aud (£* ((u*u) +(4.*u*f)+(4.*f))) /den
frll= ((z-(cos(x)*u/b))**2.-1.) *cos (x) *aud
return

end

function fri2(x,u)

common /func/f,b,:z

den = (f*((u*u)+(2.*u)+2.)+u)*(u+(2.*f))
aud = (£*((u*u)+(4.*u*f)+(4.*f))) /den
fr12= ((z-(cos(x)*u/b))**4.-1.) *cos (x) *aud
return

end

function fr2l(x,u)

110



common /func/f,b,z

den = (£* ((u*u)+(2.%u)+2.)+u)* (u+(2.*f))
aud = (£* ((u*u)+(4.*u*xf)+(4.*f)))/den
fr2l= ((z+(cos(x)*u/b))**2.—1.)*cos(x)*aud
return

end

function fr22 (x,u)

common /func/f,b,z

den (f*((u*u)+(2.*u)+2.)+u)*(u+(2.*f))

aud (£% ((u*u) + (4.*u*f)+(4.*f))) /den
fr22= ((z+(cos(x)*u/b))**4.-1.)*cos (x) *aud
return

end

function fr3l(x,u)

common /func/f,b,z

den = (£* ((u*u)+(2.%u)+2.)+u)* (u+(2.*£))

aud = (£* ((u*u)+(4.*u*f)+(4.*f)))/den

Fr3l= ((z*(2.*sin(x)-1.)+(cos(x)*u/b))**2.-1.)*cos (x) *aud
return

end

function £fr32(x,u)
common /func/f,b,z

den = (£* ((u*u)+(2.%u)+2.)+u)* (u+(2.*f))

aud (f*((u*u)+(4.*u*f)+(4.*f)))/den
fr3z2= ((z*(2.*sin(x)—l.)+(cos(x)*u/b))**4.—1.)*cos(x)*aud
return

end
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function o (x)

common /func/f,b,z

o = 0.0

return

end

function g(x)

common /func/f,b,z

q = b*z*(1l.-sin(x))/cos(x)
return

end

function r(x)

common /func/f,b,z

r = b*x(l.-z)/cos(x)

return

end

function s (%)

common /func/f,b,z

s = b*(1l.+z-(2.*z*sin(x)))/cos (x)
return

end
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